Math 8020 Chapter 1: Commutative Rings

نویسنده

  • PETE L. CLARK
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine properties of finite commutative rings

Simple observations on diophantine definability over finite commutative rings lead to a characterization of those rings in terms of their diophantine behavior. A.M.S. Classification: 13M10, 11T06, 03G99.

متن کامل

Two New Types of Rings Constructed from Quasiprime Ideals

Keigher showed that quasi-prime ideals in differential commutative rings are analogues of prime ideals in commutative rings. In that direction, he introduced and studied new types of differential rings using quasi-prime ideals of a differential ring. In the same sprit, we define and study two new types of differential rings which lead to the mirrors of the corresponding results on von Neumann r...

متن کامل

Thesis Summary

The main goal of my thesis is the application of logical and computability-theoretic techniques to better understand the foundational nature of structures and theorems from different branches of mathematics. To achieve this goal, I examined the effective (i.e. computable) content of structures and theorems from several different branches of math, including computability theory and model theory ...

متن کامل

Jónsson and HS Modules over Commutative Rings

Let R be a commutative ring with identity and let M be an infinite unitary R-module. (Unless indicated otherwise, all rings are commutative with identity 1 ̸ = 0 and all modules are unitary.)ThenM is called a Jónsson module provided every proper submodule of M has smaller cardinality than M. Dually, M is said to be homomorphically smaller (HS for short) if |M/N| < |M| for every nonzero submodule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011